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Abstract The generalized integral transform technique (GITT) is an hybrid numerical-analytical
method that has been successfully applied in convection-diffusion problems, where the original
potentials are replaced by eigenexpansion series, and the system of partial differential equations is
transformed into a finite system of ordinary differential equations, allowing to obtain an error
controlled solution without any kind of grid generation. This paper aims at the application of GITT
to the transient version of the classical differentially heated square cavity problem, considering
fluid properties as functions of temperature. Comparing results to some previously reported data
for constant fluid properties validates the computational procedure. The solution for variable fluid
properties with Boussinesq approximation is presented for several values of inclinations, at
Rayleigh number of 103 and a Prandtl number of 0.71, demonstrating GITT capability of
capturing circulating cells formation and evolution at a low Rayleigh number. New correlations for
leaning angle and aspect ratio are presented.
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Nomenclature
a ¼ cavity length
b ¼ cavity height
Cp ¼ specific heat at constant

pressure, dimensional and
dimensionless

g ¼ gravity acceleration
k ¼ thermal conductivity,

dimensional and
dimensionless

Nu ¼ Nusselt number
P ¼ pressure
Pr ¼ Prandtl number
r ¼ aspect ratio
Ra ¼ Rayleigh number
Re ¼ Reynolds number
t ¼ time
T ¼ temperature
u ¼ longitudinal velocity
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Introduction
Processes of inner natural convection, besides having a vast number of
applications in different areas of engineering, also represent a good test for
numerical methods, due to strong non-linear coupling among equations of
movement and energy. The classic problem of square cavity (lid-driven flow)
with sides warmed at different temperatures has been used as a test to compare
different numerical methods, and represents a challenge when the intensity of
the process causes instabilities, as in the case of high Rayleigh numbers
(Leal, 1996).

Most studies have been done using the Boussinesq approximation (1903) to
simplify the solution of practical problems. The approximation is based on two
principles: variation of fluid density is important only in the buoyancy term
and other physical properties are considered constant.

Such hypothesis not always reproduces the physical phenomena with the
desired precision, depending on the imposed temperature difference between
the walls (Zhong et al., 1985). A non-Boussinesq model considering the
variation of properties taken as a whole and individually and still introducing
geometric variables, like angle variation in the problem of square cavity, could
reproduce more realistic physical effect in the cavities. The establishment of
reliable benchmark results in transient-state is of major interest in allowing
critical comparisons among different scheme variants and computational
implementation strategies.

The influence of the fluid properties variation with temperature has
appeared as an important aspect to be analyzed in this class of problems. The
well-known Boussinesq approximation has been extensively employed, but
very little research has been undertaken to inspect the influence of variable

component, dimensionless
v ¼ transversal velocity

component, dimensionless
y ¼ transversal coordinate
Yi(x) or Yj(y) ¼ normalized eigenfunction of

order i/j for the
streamfunction expansion

x ¼ longitudinal coordinate,
dimensionless

Greek symbols
f̄i(x) ¼ normalized eigenfunction of

order i for the temperature
expansion in the x-direction

m ¼ fluid absolute viscosity,
dimensional and
dimensionless

v ¼ fluid kinematic viscosity

c ¼ streamfunction
Cij(t) ¼ transformed streamfunction
Ḡj(y) ¼ normalized eigenfunction of

order j for the temperature
expansion in the y-direction

g ¼ leaning angle
u0 ¼ dimensionless temperature

difference
Qij(t) ¼ transformed temperature
r ¼ fluid density, dimensionless

Subscripts and superscripts
* ¼ relative to dimensional

quantities (x, y, u, v, T, P, r, Q)
0 ¼ relative to properties

estimated at initial
temperature
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thermophysical properties in the flow structure, with or without the Boussinesq
simplification. We can mention others researches to our present purposes, such
as, Bergles (1983) who presented a correlation formula to compute the influence
of each property (viscosity and conductivity) for forced convection in tubes,
considering incompressible flow. Gray and Giorgini (1976) studied the limits of
application of the Boussinesq approximation to external flows of water and air,
using two orders of approximation: strict and extended. They also presented
graphics to indicate accurate limits of those hypotheses. The stability and the
limits of the Boussinesq approximation were also the subject in the works of
Graham (1975) and Spradley and Churchill (1975), both using the finite
difference method to compute the lid-driven cavity problem for a compressible
fluid with variable properties. Suslov and Paolucci (1995) reproduced and
extended the results of these works, aimed at finding the critical Rayleigh
number, and showing the presence of two regimen of instability, one of them
due to the non-Boussinesq effects. Yu et al. (1996) tried to present a benchmark
for the compressible problem (the lid-driven cavity), using finite element
analysis, and handling the common limitations of this method when applied to
low-Mach number compressible flows. Finally, Zhong et al. (1985) revised the
work of Graham (1975), centering their study in the validity of the Boussinesq
approximation. They found a more strict limit than the one presented by Gray
and Giorgini (1976), despite the good agreement achieved for Nusselt number
calculations.

The generalized integral transform technique (GITT) is a relatively recent
method for the solution of partial differential equations (Cotta and e Mikhailov,
1998), and has shown itself as an alternative to the purely discrete methods. Its
numerical-analytical hybrid character allows the automatic error control
during the solution of the equations. This avoids the need for many executions
of the computational code for convergence, dispenses grid generation and
allows an easy extension to a larger number of dimensions involved in the
problem.

In GITT, the need to find an exact integral transform for the problem is
relieved by an auxiliary eigenvalue problem, most representative as possible
from the original problem. The original potentials are represented by an infinite
summation of the eigenfunctions, obtained from the auxiliary problem and the
transformed potentials. When the transform is applied, one obtains an infinite
coupled ordinary differential system of equations that is truncated in a
sufficient order to reach the desired accuracy. The system is solved through
well-established algorithms, that have automatic error control and are available
in libraries of scientific routines such as DIVPAG (IMSL Library, 1989).

In this work, the problem of the cavity with differential heating is solved by
GITT for different leaning angles and aspect ratios, using air as working fluid
and considering all the properties as functions of the temperature. The method
of solution is validated comparing the results for a square cavity horizontally
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arranged, with constant properties (and available in literature), in a range of
temperature where Boussinesq approximation is valid. One of the aims was to
verify the GITT capability of capturing more complex characteristics of the
phenomena, such as recirculations and obtaining a correlation for the flow
behavior as a function of the cavity leaning angle.

From the results, it was possible to prove the physical consistence of the
method at low Rayleigh numbers. In addition, the results prove that GITT was
capable of capturing recirculations, even of low intensity, and obtaining a
correlation for the convection heat transfer for variable properties, providing,
for the case simulated, Pr ¼ 0:7 and Ra ¼ 103; an averaged Nusselt number as
a function of the cavity leaning angle.

Physical problem
The problem to be analyzed consists of a rectangular cavity, filled with air
(Prandtl number: Pr ¼ 0:71), with sides a and b and leaning angle g, which the
parallel walls to the x axis are thermally isolated and the walls parallel to the y
axis are at constant and uniform temperatures, as shown in Figure 1.

The simplifying hypotheses assumed for the current problem are:
two-dimensional, laminar flow of a Newtonian fluid with constant density,
except in the thermal-driven force term, impermeable wall and no-slip condition
in the walls.

The cavity dimensions are normalized by the sides a and b. From usual
applied dimensionless processes, the equations in stream function formulation
become:

Figure 1.
Cavity geometry
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where r ¼ a=b is the aspect ratio. The boundary conditions for the problem in
dimensionless form are:

T ¼ 1; c ¼ cy ¼ 0 at x ¼ 0 ð3aÞ

T ¼ 0; c ¼ cy ¼ 0 at x ¼ 1 ð3bÞ

Ty ¼ 0; c ¼ cx ¼ 0 at y ¼ 0 ð3cÞ

Ty ¼ 0; c ¼ cx ¼ 0 at y ¼ 1 ð3dÞ

The initial conditions are:

Tðx; y; 0Þ ¼ 0 ð3eÞ

cðx; y; 0Þ ¼ 0 ð3fÞ

where the reference Rayleigh and Prandtl numbers are defined as:

Ra0 ¼
gbðTh 2 TcÞa

3

a0m0
ð4aÞ

Pr0 ¼
m0Cp0

k0
ð4bÞ

and the remaining dimensionless variables are given by:
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c ¼
c*

a0
; ð4cÞ

t ¼
a0

a2
t*; ð4dÞ

x ¼
x*

a
; ð4eÞ

y ¼
y*

b
; ð4fÞ

T* ¼
T* 2 Tc

Th 2 Tc
; ð4gÞ

m ¼
m*

m0
; ð4hÞ

k ¼
k*

k0
; ð4iÞ

Cp ¼
Cp*

Cp0

ð4jÞ

where the subscript “*” identifies the dimensional variables, the subscript “0”
denotes the property estimate at the initial temperature, except for the reference
properties, which are estimated at the film temperature, a is the fluid thermal
diffusivity, m is the variable kinematic viscosity, k is the variable thermal
conductivity, Cp is the variable specific heat, Th is the hot wall temperature, Tc

is the cold wall temperature, g is the gravity acceleration and b is the fluid
volumetric expansion coefficient.

The boundary conditions of temperature are homogenized through the filter
Tðx; y; tÞðfilteredÞ ¼ Tðx; y; tÞ þ Tf ðxÞ; where Tf ðxÞ ¼ 1 2 x:

Numerical solution through integral transformation
In order to solve convective-diffusive problems by GITT, the steps to be
followed are to define and solve auxiliary problem to obtain the eigenfunctions,
eigenvalues and norms, to develop the direct and inverse transforms pairs,
achieve the integral transform of the partial differential system in a coupled
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ordinary differential system and obtain the original potentials through
inversion formula.

The auxiliary problems for each variable are chosen from Sturm-Liouville
eigenvalue problems of fourth and second-order with homogeneous boundary
conditions for streamfunction and temperature, respectively (Leal, 1996):

The transformed potentials and inversion formulas are given by:

Ci; jðtÞ ¼

Z 1

0

Z 1

0

YiðxÞYjð yÞcðx; y; tÞ dy dx ð5aÞ

Qi; jðtÞ ¼

Z 1

0

Z 1

0

�fiðxÞ �GjðyÞTðx; y; tÞ dy dx ð5bÞ

cðx; y; tÞ ¼
X1
i¼1

X1
j¼1

YiðxÞYjð yÞCi; jðtÞ ð6aÞ

Tðx; y; tÞ ¼
X1
i¼1

X1
j¼1

�fiðxÞ �Gjð yÞQi; jðtÞ ð6bÞ

The ordinary differential equations system is obtained from the integral
transform of equations (1) and (2), after application of integral operators,
replacing the inversion formulas (equation (6)), and taking advantage of the
orthogonality property of eigenfunctions (Mikhailov and Özisik, 1984),
giving:
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dt
¼

Z 1

0

Z 1

0

�fiðxÞ �Gið yÞ
›C

›y

›T

›x
2

›C

›x

›T

›y

�

2
1

r0Cp
0

k72T þ
›k

›x

›T

›x
þ r 2 ›k

›y

›T

›y

� �
þ

dTh

dt

)
dy dx

ð8Þ

Equations (7) and (8), can be rewritten in a compact form as:

X1
k¼1

X1
l¼1

Eijkl
dCklðtÞ

dt
¼ FijðtÞ ð9Þ

dQi; jðtÞ

dt
¼ GijðtÞ ð10Þ

The transformed initial conditions are obtained by operating the following
original initial conditions:

Cijðt ¼ 0Þ ¼ 0 ð11aÞ

Qi; jðt ¼ 0Þ ¼

Z 1

0

Z 1

0

�fiðxÞ �Gjð yÞðx 2 1Þ dy dx ð11bÞ

Equations (9) and (10) constitute an ordinary differential system of stiff type,
where the transformed potentials have the decaying rates very distinguished
from each other. For numerical solution of this system, the subroutine
DIVIPAG (IMSL Library, 1989), which allows automatic control of local
error, keeping it inside the desired tolerance, was applied. The expansions
are truncated in a finite number of terms, NC and NT, for stream function
and temperature, respectively, resulting in a system of coupled differential
equations. The number of equations obtained after transformation in the two
directions are NC2 þ NT2:

At each step of time, the coefficients Fij and Gij must be numerically
integrated. For reduction of computational costs, it was employed in the
algorithm, developed by Machado (1999), that uses the integration technique of
Gauss Quadrature (and made the solution feasible).

Convergence analysis
In order to validate the code, the same number of 120 terms was used for stream
function (NC) and temperature (NT). The precision used in the integration of
the system and in the solution of the ordinary differential equations system
was 1024. Initially, the code was validated comparing the results obtained for
low differences of temperature (inside validity limit of Boussinesq
approximation), with those obtained through GITT for a fluid with constant
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properties (Leal, 1996), considering g ¼ 0 and r ¼ 1: The limit of validity for
the Boussinesq approximation was proposed by Zhong et al. (1985) as:

u0 ¼ 0:0244 Ra0:243 ð12aÞ

where

u0 ¼ ðTh 2 TcÞ=Tc ð12bÞ

The limit for Ra ¼ 103 is u0 ¼ 0:13 In Table I, results for variable fluid
properties and u0 ¼ 0:0101 show excellent agreement with the results for
constant properties, until the third significant algorithm, for stream function
and temperature.

The convergence analysis was made for the most critical case considered, i.e.
aspect ratio 10 and leaning angle 458. Table II shows the results for stream
function and temperature in function of the number of integration points used
in the Gauss quadrature – NF – for a non-Boussinesq case, where u0 ¼ 0:5
(out of the limit of application of the Boussinesq hypothesis), with Ra ¼ 103 at
t ¼ 0:005: It was verified that NF ¼ 30 was enough to make the convergence
reach the desired accuracy.

In Table III, the convergence of the streamfunction and temperature are
shown with simultaneous variation of truncation order of each series, NC and
NT, in the case discussed earlier. From the results, 120 terms for NC and NT
were considered enough to reach the desired accuracy, and this number of
terms has been employed in the rest of this work.

x y 10 20 30 40 Leal (1996)

Stream function £ NF (NC and NT ¼ 120)
0.1 0.1 20.0449 20.0393 20.0393 20.0393 20.0393
0.1 0.3 20.0774 20.0966 20.0967 20.0967 20.0966
0.1 0.9 20.0449 20.0396 20.0395 20.0395 20.0395
0.3 0.1 20.0011 20.0153 20.0153 20.0153 20.0153
0.3 0.3 20.0117 20.0755 20.0755 20.0755 20.0757
0.3 0.9 20.0017 20.0154 20.0154 20.0154 20.0155
0.9 0.1 20.0000 20.0011 20.0011 20.0011 20.0011
0.9 0.3 20.0066 20.0062 20.0062 20.0062 20.0062
0.9 0.9 20.0001 20.0011 20.0011 20.0011 20.0011

Temperature £ NF (NC and NT ¼ 120)
0.1 0.1 0.4760 0.4767 0.4765 0.4765 0.4783
0.1 0.3 0.4124 0.4819 0.4821 0.4819 0.4874
0.1 0.9 0.4900 0.4874 0.4875 0.4874 0.4891
0.3 0.1 0.0203 0.0004 0.0004 0.0004 0.0004
0.3 0.3 20.0046 0.0005 0.0005 0.0005 0.0005
0.3 0.9 0.0208 0.0005 0.0005 0.0005 0.0005
0.9 0.1 20.0042 0.0000 0.0000 0.0000 0.0000
0.9 0.3 0.0261 0.0000 0.0000 0.0000 0.0000
0.9 0.9 20.0044 0.0000 0.0000 0.0000 0.0000

Table I.
Results of present work
compared to Leal (1996)
for a square horizontal
cavity, within the limit

of Boussinesq
hypothesis

(u0¼ 0.0101),
considering Ra ¼ 103 at

t ¼ 0:01
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Results
For all simulations, Ra ¼ 103 and u0 ¼ 0:5 were considered. The first aspect
analyzed was the sensitivity of flow to the individual variation of each
property, compared with the cases of fluid with constant properties and all
properties varying for the case g ¼ 0 and r ¼ 1: The functions employed to
represent the fluid physical properties variation with temperature, provided by
Zhong et al. (1985) in dimensionless form, are written as:

x y 10 20 30

Stream function £ NF (NC and NT ¼ 120)
0.1 0.1 0.00051 20.00116 20.00116
0.1 0.5 0.00498 20.00868 20.00866
0.1 0.9 0.00046 20.00116 20.0116
0.5 0.1 0.00228 0.00003 0.00003
0.5 0.5 0.01403 0.00021 0.00018
0.5 0.9 0.00226 0.00003 0.00003
0.9 0.1 0.00018 0.00000 0.00000

Temperature £ NF (NC and NT ¼ 120)
0.1 0.1 0.33058 20.38636 20.38619
0.1 0.5 0.28667 20.38643 20.38627
0.1 0.9 0.33052 20.38651 20.38634
0.5 0.1 20.01376 20.00042 20.00038
0.5 0.5 20.02056 20.00042 20.00038
0.5 0.9 20.01376 20.00042 20.00038
0.9 0.1 0.02558 0.00015 0.00026

Table II.
Convergence for the
variation of the number
of terms used in the
Gauss Quadrature
integration – NF, for the
case of r ¼ 10, g ¼ 458,
with Ra ¼ 103 and
u0 ¼ 0:5, at t¼ 0.005

x y 60/60 80/80 100/100 120/120

Stream function
0.1 0.1 20.02437 20.02540 20.02552 20.02566
0.1 0.3 20.06500 20.06600 20.06596 20.06570
0.1 0.9 20.02444 20.02544 20.02556 20.02569
0.3 0.1 20.01195 20.01231 20.01235 20.01222
0.3 0.3 20.05939 20.05984 20.05960 20.05969
0.3 0.9 20.1205 20.1240 20.1244 20.1232
0.9 0.1 20.00082 20.00096 20.00084 20.00088

Temperature
0.1 0.1 0.54481 0.54774 0.54760 0.54767
0.1 0.3 0.55817 0.55122 0.55113 0.55124
0.1 0.9 0.55155 0.55470 0.55466 0.55482
0.3 0.1 20.00010 0.00091 0.00054 0.00057
0.3 0.3 20.00003 0.00089 0.00059 0.00061
0.3 0.9 0.00005 0.00088 0.00064 0.00064
0.9 0.1 20.00020 0.00005 20.00005 0.00007

Table III.
Convergence for the
variation of the
truncation order of the
expansions (NC/NT), for
the case of r ¼ 10,
g ¼ 458, with Ra ¼ 103

and u0 ¼ 0:5 at
t ¼ 0:01, using NF ¼ 40
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k ¼
2:6482 £ 1023T

3
2

T þ 245:4 £ 102
12
T

ð13aÞ

Cp ¼ 9898:24 2 0:3316T þ 0:2025 £ 1023T 2 ð13bÞ

m ¼
14:58 £ 1027T

3
2

110:4 þ T
ð13cÞ

Analyzing the Zong’s equations between temperatures of 300 and 500 K, we
can see an increase of 50 percent approximately in the thermal conductivity,
40 percent for the viscosity and a decrease of 4 percent for the specific heat, as
well. In Figure 2, it is possible to observe that the conductivity increases with
temperature and, there will be an increase in the thermal diffusivity, raising the
thermal boundary layer, resulting in a larger displacement of the stream
functions compared to the case of constant properties. The variation of
viscosity gives an opposite effect, since the viscosity increases with
temperature inducing an increase in the momentum dissipation and
consequently decreasing the displacement intensity of the stream function.
However, with lesser intensity than the conductivity, specific heat has little
effect over the behavior of the stream functions compared with the constant
properties. Nevertheless, we must take into account that the Rayleigh number
is low. At higher values of Rayleigh number, the influence of specific heat tends
to intensify (Leal et al., 2000).

Inclined cavities have the same behavior of the non-inclined cavities for
variable properties, only intensifying and not effecting the function of the
gravitational force. Figure 3, shows the results for all variable properties and
different leaning angles, where the ratio a/b is equal to 1.0 in t ¼ 0:02: At a
lesser time, the stream function shows higher intensity of the streamlines,
which has their center of rotation in y ¼ 0:5 and x , 0:5: In this time interval,
the recirculation is more intense near the warmed wall. This phenomenon is
known by other researchers and, could be captured by the GITT technique.
Once the time increases, this center is displaced to y ¼ 0:5 and x ¼ 0:5: We
note a higher intensity of streamlines for the angles g ¼ 158 and 08, compared
to the higher angles. The temperature profiles in this case present a more
evident effect of the gravitational term, as shown in Figure 4. For higher
inclination angles, the isotherms are almost linear.

Figure 5 compares the streamlines for cases g ¼ 158; r ¼ 1 and g ¼ 458;
r ¼ 10: A small influence over the flow at low leaning angles verifies
Figure 5(a). In Figure 5(b), the most critical case simulated is shown, and a
substantial alteration in the streamlines can be observed, as the vanishing
center of rotation.
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Figure 2.
Streamlines and
isotherms for t ¼ 0.5
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Based on the results obtained for the mean Nusselt, using Ra ¼ 103 and
Pr ¼ 0:7; we can correlate this for an inclined cavity of aspect ratio equal to 1,
a polynomial relation that was found as follows:

Num ¼ 0:9165 þ 0:00026g2 1:24 £ 1025g2 ð14Þ

The values for average Nu according to Figure 6, show a high exchange of
convective heat at angles between 0 and 308. It presents a maximum value for
the average Nusselt number at an angle of approximately 158. The influence of
the heat conductivity on the heat transfer process as the leaning angle increases
is also evident.

Figure 3.
Streamlines for different

leaning angles and
t ¼ 0.02
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Figure 7 shows the variation of the mean Nusselt number in an horizontal
cavity, as a function of the aspect ratio. The graphic shows an exponential
decrease, which can be represented by the correlation:

Num ¼
0:86078

ð1 2 e22:88rÞ
ð15Þ

Equation (15) provides an error smaller than 0.5 percent, that vanishes as r
increases. Such behavior is due to the lowering of the cavity height,
diminishing of the buoyancy effect and consequently decreasing the convective
heat transfer.

Figure 4.
Isotherms for different
leaning angles and
t ¼ 0.5
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Conclusions
In this work, the natural convection process inside an inclined rectangular
cavity was studied, with air as the working fluid considering variable
thermo-physical properties. The GITT was used to solve the governing
equations.

Figure 5.
Streamlines in two

distinct cases

Natural
convection in

enclosures

1093



Initially, the method was validated by comparing the results of a problem
inside the validity limits of Boussinesq approximation, to a fluid with constant
properties. In a second instance, a convergence analysis was made, in order to
establish a truncation order for the streamlines and temperature

Figure 6.
Average Nusselt number
as a function of the
leaning angle

Figure 7.
Average Nusselt number
as a function of the
aspect ratio
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expansions and the number of Gauss points used in numerical integration of
coefficients.

For a particular Rayleigh number (103), the flow sensitivity was observed by
varying each property, using their correlations with temperature, and
simultaneously varying the leaning angle for all properties.

The results allowed us to conclude that thermal conductivity and dynamic
viscosity are the properties most sensitive to temperature variations, and also
have influence on heat flux as much as on the local flow temperatures and
streamlines. For a cavity with aspect ratio equal to 1, it was possible to
determine an ideal angle for convective heat transfer in cavities, and to obtain
correlations for the mean Nusselt number in function of the leaning angle and
aspect ratio, where an asymptotic value was found as the aspect ratio
increases.

It was evident that the GITT had the capability to solve this problem and
capture recirculations, even those of low intensity. As a sequence to this work,
charts that cover an appreciable range of variations of Rayleigh number for
different leaning angles and aspect ratios are obtained.

References

Bergles, A.E. (1983), “Prediction of the effects of temperature dependent fluid properties on
laminar heat transfer”, Fundamentals of Low Reynolds Number Forced Convection,
Hemisphere, NY.

Boussinesq, J. (1903), Theorie Analytique de la Chaleur, Gauthier-Villars, Paris, Vol. 2.

Cotta, R.M. and e Mikhailov, M.D. (1998), The Integral Transform Method in Thermal and Fluid
Science and Engineering, Begell House Inc. Publishers, NY.

Graham, E. (1975), “Numerical simulation of two-dimensional compressible convection”, J. Fluid
Mech., Vol. 70, Part 4, pp. 689-703.

Gray, D.D. and Giorgini, A. (1976), “The validity of the Boussinesq approximation for liquids and
gases”, Int. J. Heat Mass Transfer, Vol. 19, pp. 545-51.

IMSL Library (1989), Math/Lib., Houston, Texas.

Leal, M.A. (1996), “Natural convection in cavities for steady and unsteady states – the method of
integral transforms”, Doctoral thesis, Federal University of Rio de Janeiro, Rio de Janeiro
(in Portuguese).

Leal, M.A., Machado, H.A. and e Cotta, R.M. (2000), “Integral transform solutions of transient
natural convection in enclosures with variable fluid properties”, Int. J. Heat Mass Transfer,
No. 43, pp. 3977-90.

Machado, H.A. (1999), “Flexible algorithm for solution of convection-diffusion problems through
integral transforms”, Proceedings of XV COBEM, Águas de Lindóia, Brazil.
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